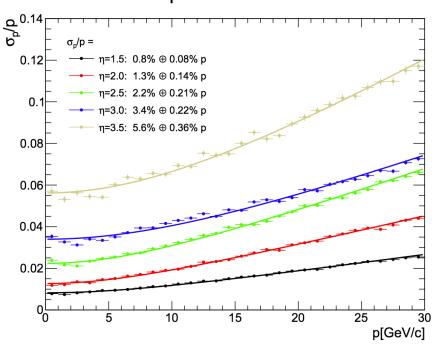


PHG4TrackFastSim Fast Tracking using GenFit and PHG4Hit

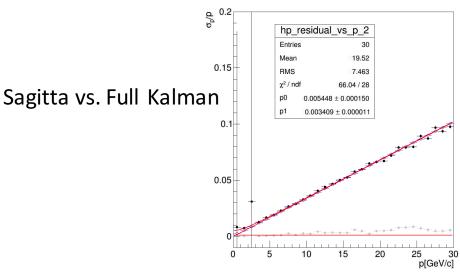
Jin Huang(BNL),
Haiwang Yu (NMSU)
Sep 06, 2016

Introduction

Motivation: Quickly produce fsPHENIX tracking performance with Geant simulation + Kalman Filter.

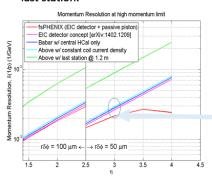

- More realistic than Sagitta calculation.
- Good estimation before the detector design finalized.
- Serves as prototype for forward sPHENIX tracking software
 - with future pattern recognition component.

Procedure:

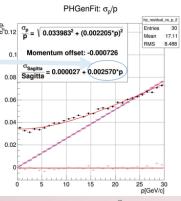

- Simulation
 - ⇒ PHG4TruthInfoContainer.
 - \Rightarrow PHG4Hit.
 - ⇒ TGeo detector geometry in DST run node (PHGeometry by Jin)
- Feed the Kalman Filter:
 - PHG4Hit ⇒ Measurements: Smear PHG4Hit according to given detector resolution.
 - Measurements grouping: use MC truth information, "pseudo pattern recognition"
 - Seed: Smeared MC truth information
- Output:
 - SvtxTrackMap ⇒ SvtxTrack_FastSim, contains truth track index for simplified truth track matching.
- SpinFest2016 Slides:
 - https://indico2.riken.jp/indico/getFile.py/access?contribld=19&resId=0&materialId=slides&confId=2284

In previous talks:

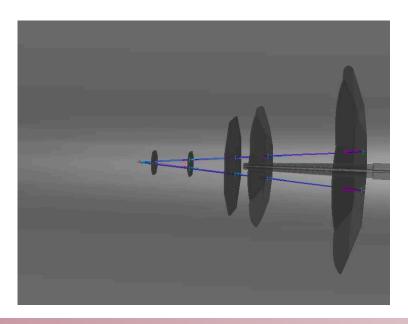
Resolution vs. pT for different eta

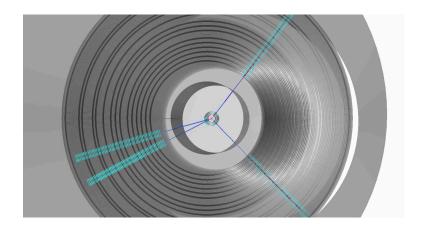


PHGenFit: σ_p/p


Compare to previous Sagitta Calculation

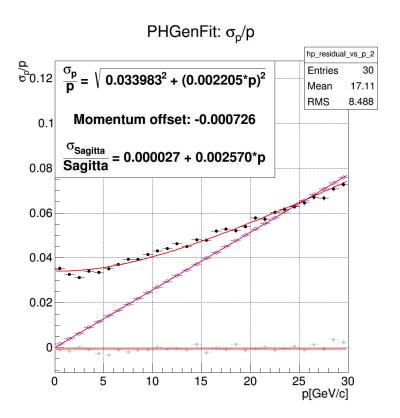
<u>Jin's</u> calculation based on vertex + optimum Sagitta plane + 300cm last station.


GenFit fitting for η = 3.0, corresponding to magenta curve in left plot.

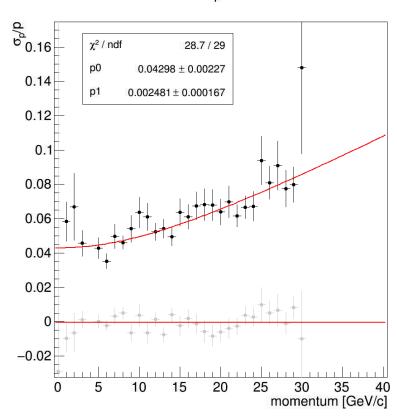

- The linear term, p1, from the σ_S/S is consistent with left plot, both are ~0.25%.
- The p1 term from full GenFit Kalman is better than σ_s/S . That could be caused by that we have more stations in full Kalman.

Structure

- coresoftware/g4hough/PHG4TrackFastSim:
 - Merged Pull Request #192
 - Tracking module
 - Input: PHG4TruthInfoContainer and PHG4HitsContainer
 - Output: SvtxTrackMap with SvtxTrack_FastSim filled in.
- analysis/Tracking/FastTrackingEval:
 - Fill eval NTuples and Histos
- example macros:
 - analysis/Tracking/FastTrackingEval/macros


Switches

```
PHG4TrackFastSim* kalman = new PHG4TrackFastSim("PHG4TrackFastSim");
kalman->Verbosity(0);
kalman->set_use_vertex_in_fitting(true);
kalman->set_detector_type(PHG4TrackFastSim::Vertical_Plane); // Vertical_Plane, Cylinder
kalman->set_phi_resolution(50E-4);
kalman->set_phi_resolution(1.);
kalman->set_mag_field_file_name("fieldmap.root");
kalman->set_mag_field_re_scaling_factor(1.);
kalman->set_mag_field_re_scaling_factor(1.);
kalman->set_pat_rec_hit_finding_eff(1.);
kalman->set_pat_rec_nosise_prob(0.);
kalman->set_do_evt_display(false);


std::string_phg4hits_names[] = {"G4HIT_FGEM_0", "G4HIT_FGEM_1", "G4HIT_FGEM_2", "G4HIT_FGEM_3", "G4HIT_FGEM_4"};
kalman->set_phg4hits_names(phg4hits_names, 5);
kalman->set_sub_top_node_name("SVTX");
kalman->set_trackmap_out_name("SvtxTrackMap");
```

Comparing with previous standalone code

Standalone program

This module σ_p/p

To-dos

More tests with this module.

Investigate some generic pattern recognition options.

• e.g. from OLYMPUS Experiment